Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 9(9): 1078-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25423911

RESUMO

Expansion of pluripotent stem cells in defined media devoid of animal-derived feeder cells to generate multilayered three-dimensional (3D) bulk preparations or spheroids, rather than two-dimensional (2D) monolayers, is advantageous for many regenerative, biological or disease-modelling studies. Here we show that electrospun polymer matrices comprised of nanofibres that mimic the architecture of the natural fibrous extracellular matrix allow for feeder-free expansion of pluripotent human induced pluripotent stem cells (IPSCs) and human embryonic stem cells (HESCs) into multilayered 3D 'patty-like' spheroid structures in defined xeno-free culture medium. The observation that IPSCs and HESCs readily revert to 2D growth in the absence of the synthetic nanofibre membranes suggests that this 3D expansion behaviour is mediated by the physical microenvironment and artificial niche provided by the nanofibres only. Importantly, we could show that such 3D growth as patties maintained the pluripotency of cells as long as they were kept on nanofibres. The generation of complex multilayered 3D structures consisting of only pluripotent cells on biodegradable nanofibre matrices of the desired shape and size will enable both industrial-scale expansion and intricate organ-tissue engineering applications with human pluripotent stem cells, where simultaneous coupling of differentiation pathways of all germ layers from one stem cell source may be required for organ formation.


Assuntos
Nanofibras/química , Células-Tronco Pluripotentes/citologia , Polímeros/química , Técnicas de Cultura de Células , Microscopia Eletrônica de Varredura , Células-Tronco Pluripotentes/ultraestrutura
2.
Tissue Eng Part C Methods ; 19(6): 458-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23102268

RESUMO

AIM: Biomaterials that mimic the nanofibrous architecture of the natural extracellular matrix (ECM) are in the focus for stem cell hosting or delivery in tissue engineering of multilayered soft tissues such as skin, mucosa, or retina. Synthetic nanofibers for such ECM are usually produced by single-syringe electrospinning with only one needle-jet at very low production rates of 0.005-0.008 g·min⁻¹. The aim of this study was to utilize a novel industrial needle-free multijet electrospinning device with the potential for mass production of nanofibrous ECM (NF-ECM) exhibiting a controlled three-dimensional (3D) morphology for large-scale applications such as large area skin regeneration in patients with burns. METHODS: The novel NanoSpider™ NS200, an industrial apparatus originally designed for electrospinning of nanofibrous textile meshes, was used to fabricate 3D NF-ECMs of the following synthetic and natural biopolymers: collagen, gelatin, poly(caprolactone) (PCL), and poly(L-lactide-co-glycolide) (PLGA). Different concentrations of Gelatin polymer solution were electrospun under varying processing conditions, namely speed of spinning electrode rotation (u) and electric field intensity (E) by altering applied voltage (v) or the distance between electrodes (h) to achieve homogeneous desirable 3D morphology. Nanofiber diameters were assessed by scanning electron microscopy (SEM). Biocompatibility was tested by WST-1 (water-soluble tetrazolium salt) proliferation assay of seeded human mesenchymal stem cells (HMSCs). Biological performance of HMSCs on 3D PLGA NF-ECM was compared to two-dimensional (2D) PLGA film controls via SEM and confocal microscopy. Western blotting addressed the expression of surface adhesion proteins; focal adhesion kinase (FAK), phosphorylated FAK (pY397), α-tubulin, paxillin, vinculin. and integrin subunits; α5, αv, and ß1 proteins. RESULTS: Large-scale mass production of NF-ECM membranes with a highly homogenous nanofiber morphology and 3D architecture could be produced with an extremely high production rate of 0.394±0.013 g·min⁻¹·m⁻¹ when compared to standard procedures. This was achieved by electrospinning a 20% (wt)/v gelatin solution, in an electric field intensity of 0.381 kV·mm⁻¹. The nanofibers possessed diameters of around 180±40 nm with 28% deviation. HSMCs proliferation was significantly improved on NF-ECMs derived from collagen, gelatin, and PLGA when compared to PCL or flat coverglass controls (p<0.01). PLGA NF-ECM in 3D nanofibrous architecture possessed significantly superior biocompatibility when compared to flat 2D PLGA film (p<0.05). Furthermore, on 3D PLGA NF-ECMs, HSMCs expressed a higher amount of α-tubulin and paxillin compared to the HMSCs cultured on a 2D PLGA film (p<0.05). HMSCs exhibited a complex multifaceted morphology on all NF-ECMs, where cells appeared to be integrated into the 3D NF-ECMs niches with complex cell filopodia extending into to all directions. In contrast, HMSCs on flat 2D films of the same materials or on coverglass displayed a simple flattened, monolayered structure. CONCLUSION: Needle-free multijet electrospinning can be used to mass produce artificial ECMs with intrinsic biocompatibility and desirable integration of stem cells for large-scale applications.


Assuntos
Biopolímeros/química , Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais/química , Adulto , Antígenos de Diferenciação/metabolismo , Matriz Extracelular/ultraestrutura , Humanos , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Nanofibras/ultraestrutura , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
3.
Adv Healthc Mater ; 2(5): 702-17, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23184860

RESUMO

Novel clinical grade electrospinning methods could provide three-dimensional (3D) nanostructured biomaterials comprising of synthetic or natural biopolymer nanofibers. Such advanced materials could potentially mimic the natural extracellular matrix (ECM) accurately and may provide superior niche-like spaces on the subcellular scale for optimal stem-cell attachment and individual cell homing in regenerative therapies. The goal of this study was to design several novel "nanofibrous extracellular matrices" (NF-ECMs) with a natural mesh-like 3D architecture through a unique needle-free multi-jet electrospinning method in highly controlled manner to comply with good manufacturing practices (GMP) for the production of advanced healthcare materials for regenerative medicine, and to test cellular behavior of human mesenchymal stem cells (HMSCs) on these. Biopolymers manufactured as 3D NF-ECM meshes under clinical grade GMP-like conditions show higher intrinsic cytobiocompatibility with superior cell integration and proliferation if compared to their 2D counterparts or a clinically-approved collagen membrane.


Assuntos
Eletroquímica/métodos , Matriz Extracelular/química , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Alicerces Teciduais , Materiais Biomiméticos/síntese química , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Teste de Materiais , Tamanho da Partícula , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...